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Abstract—With the rise of the AIGC era, rhythmic music
generation has extensive applications, particularly with the surge
in motion video creation. However, generating music that is
rhythmically synchronized and stylistically aligned with motion
video presents significant challenges. Although existing methods
have made progress, they still face difficulties in producing
high-quality long-term music, particularly when addressing com-
plex rhythmic patterns and maintaining style-consistent musical
chords. In this work, we present MotionComposer, a novel
retrieval-augmented, easy-to-hard training approach designed to
enhance rhythmic music generation. By leveraging the inherent
alignment between motion rhythms and music beats, we first
tackle the simpler task of beat prediction with BeatNet, which
predicts music beats by analyzing motion patterns. To address
the complex musical chord generation, we propose ChordNet,
a retrieval-augmented network that integrates external data to
enrich chord generation. Additionally, to minimize the impact of
irrelevant retrievals, we design RAGate, a retrieval adaptive mod-
ule that selectively filters out low-relevance retrieval references
during the retrieval process. Extensive experiments across three
scenarios (i.e., dance, figure skating, and floor exercise) demon-
strate that our approach significantly enhances video soundtrack
generation, achieving new state-of-the-art performance. Our
project is available at https://beria-moon.github.io/Soundtrack-
your-Motion/.

Index Terms—Music Generation, Adaptive Retrieval, Diffusion
Model, Motion video Soundtrack.

I. INTRODUCTION

Video soundtrack generation focuses on creating music that
is precisely tailored to motion videos, ensuring alignment in
both rhythm and style. This technology has broad applications
across multimedia platforms, including social media and inter-
active entertainment. Unlike other forms of conditional music
generation, such as text-to-music generation [1]–[4], which
generate melodies based on global musical attributes, video-
conditioned music generation presents greater challenges due
to its complex temporal dynamics and the need to maintain
stylistic correlations between audio and visual elements.

Music composition centers around two fundamental com-
ponents: rhythm and chords. While predicting music beats
from motion rhythms is feasible [5], [6], generating music
that ensures both rhythmic alignment and stylistic consistency
remains a significant challenge. MIDI-based methods [6]–[8],
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which rely on structured symbolic representations, struggle to
capture the full complexity and diversity of music. Approaches
like CMT [9] and CDCD [10] aim to align video with rhythm
but fall short in fine-grained temporal details, leading to sub-
optimal rhythmic generation. Advanced models, such as D2M-
GAN [11] and the work of Li et al. [12], can generate complex
music but are constrained by the length of the generated
sequences. LORIS [5] attempts to condition chord generation
using genre labels but faces challenges in creating stylistic mu-
sical chords due to the “one-to-many” problem, where a single
genre can correspond to a wide variety of chord progressions.
In contrast, Retrieval-Augmented Generation (RAG) [13]–[15]
offers a more dynamic alternative by leveraging external data
repositories to supplement information. This approach enables
models to adapt to diverse stylistic chords with minimal effort,
providing a flexible and efficient solution. However, a key
challenge lies in seamlessly integrating the retrieved data
with the original input without introducing noise or irrelevant
information [16]–[18].

In this work, we propose MotionComposer, a novel two-
stage generation framework enhanced with an adaptive RAG
technique, as shown in Fig. 1. Unlike LORIS [5], which
directly integrates multiple conditions that may interfere with
one another, our approach focuses on rhythmic music gen-
eration by separately addressing two key elements: music
beats and music chords. In the first stage, we introduce
BeatNet, which determines the music beats by learning the
temporal coherence with motion rhythm. This ensures rhyth-
mic alignment between the music beat and motion rhythm,
effectively preventing stylistic information from disrupting
rhythmic patterns. In the second stage, we design a retrieval-
augmented ChordNet to compose appropriate chords based
on the visual style and retrieved chord reference, enabling a
progressive generation process. To further enhance stylistic
chord generation, we develop RAGate, which dynamically
retrieves the most relevant examples based on the input visual
condition. This deepens the understanding of the music style,
resulting in more consistent and fitting chord generation.

In summary, the main contributions of this work are as
follows: 1) We develop MotionComposer, a novel retrieval-
augmented, easy-to-hard generation framework that achieves
both rhythmic alignment and stylistic consistency in rhythmic

https://beria-moon.github.io/Soundtrack-your-Motion/
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Fig. 1. (a) The architecture of the proposed MotionComposer. To implement an easy-to-hard generation approach, we first develop BeatNet to estimate music
beats conditioned on dance rhythm. Following this, ChordNet, enhanced with RAGate, is designed to generate complex music chords. (b) RAGate selects
adaptive retrieval references to improve the quality and relevance of chord generation.

music generation; 2) We propose RAGate, an adaptive re-
trieval module that selectively filters out irrelevant information,
thereby improving the quality of the generated music and en-
hancing overall performance; 3) Extensive experiments across
various scenarios have been conducted. The results show that
MotionComposer outperforms current state-of-the-art (SOTA)
methods in both rhythmic alignment and stylistic consistency.

II. RELATED WORK

A. Dance-to-Music Generation

Several studies have explored the dance-to-music genera-
tion. Dance2Music [19] utilizes a local dance similarity matrix
to generate piano music with five notes, but it struggles with
rhythmic alignment. RhythmicNet [8] proposes a three-stage
method to achieve better rhythmic alignment but overlooks
the importance of music chord matching. D2M-GAN [11]
employs a pre-trained JukeBox [20] to generate multi-track
music from dance videos, but it is limited in terms of music
length and quality due to the costly pre-trained music encoder.
CDCD [10] maximizes the mutual information of dance and
music using contrastive learning and generates music with a
diffusion model. LORIS [5] advances long-term music genera-
tion using a context-aware latent diffusion model (LDM). Both
CDCD and LORIS rely on the dance genre label as a stylistic
condition to infer music chords; however, this approach is
a coarse-grained constraint for generating long-term suitable
music chords. Instead of using genre labels, DanceComposer
[6] employs a unified style feature space to learn dance-music
style relations and then uses a progressive conditional music
generator to produce multi-track MIDI in two stages. However,

since each stage is trained separately with independent datasets
and training objectives, the overall performance is limited, and
the MIDI format music lacks diversity.

B. Retrieval-augmented Audio Generation

With direct access to human-written references, retrieval-
augmented generation (RAG) has made significant strides
across a variety of applications [21]–[24]. Recent efforts in
audio generation [25] have also explored RAG techniques to
enhance the generation process. For instance, Huang it al. [26]
introduce a large number of concept compositions by opening
up the usage of retrieval audios to alleviate data scarcity. Yuan
et al. [25] use retrieved audio-text pairs as supplementary
information to enhance the modeling of low-frequency audio
events. In the retrieval process, RAG selects samples with
the highest scores from the retrieval database as references.
However, if the retrieved references are irrelevant, this can
lead to misguided responses and hinder the model’s ability
to utilize its intrinsic knowledge effectively [27]. To achieve
more accurate and reliable generation results, we introduce an
adaptive retrieval reference approach in the generation process.

III. METHOD

A. BeatNet for Music Beat Generation

Given the inherent temporal consistency between music
beats and visual rhythm, it is intuitive to predict music beats
by detecting visual rhythm, which is defined as a sudden
deceleration of motion or a dramatic change in direction [28].
For motion estimation, 2D poses P (t, j, x, y) are extracted
from motion video frames using OpenPose [29], where t



and j denote the frame number and joint index, respectively,
and x and y represent the joint coordinates. To accurately
estimate motion amplitude and strength, we follow LORIS
[5] by utilizing a directogram to represent motion changes.
We then extract the impact envelope from the directogram and
apply a peak-picking strategy [30] to simplify the continuous
curves into discrete binary codes for conditional generation.
This process yields a binary vector Cr ∈ RT×1, where a
value of 1 indicates that the corresponding time step is a
rhythm point, and T represents the total number of time
steps. After obtaining the rhythm condition, a latent diffusion
model (LDM) is employed for conditioned beat generation.
The rhythm condition Cr ∈ RT×1 is fed into the cross-
modal attention module in the intermediate layers of BeatNet
to interact with the latent embeddings. The training of BeatNet
is guided by the following objective function:

LB(θ) = EZm,ϵ,t

[
∥ϵ− ϵθ(Zt, t,Cr)∥22

]
, (1)

where Zm represents the extracted music embedding by the
music encoder, Zt is a standard Gaussian distribution obtained
by injecting Gaussian noise ϵ into Zm, and t denotes the
denoising time steps. To supervise the generation of music
beats, we apply binary cross-entropy loss to measure the
difference between the generated music beats and the ground
truth. The music beats are detected using the onset detection
function from the librosa toolbox1.

B. RAGate-augmented ChordNet for Music Chord Generation

To ensure rhythmic alignment, it is crucial that the dance
style and music chords harmonize, conveying a shared feeling
tone. This stylistic coherence is essential for expressive video
soundtrack generation but can be difficult to define explicitly.
To address this challenge, we leverage external knowledge to
assist in music chord generation. Traditional RAG selects the
top-k similar neighbors as retrieved information. However, the
reliability of this retrieved information can be problematic,
as irrelevant data may lead to inaccurate results. We propose
RAGate, an adaptive retrieval module that evaluates the rele-
vance of retrieved data thereby improving the accuracy of the
generation process.

As shown in Fig. 1(b), ChordNet processes two parallel style
conditions: a visual input Cv, representing low-level style
information, and a retrieval reference Car, representing high-
level style information. The visual embedding Cv is obtained
using the I3D model [31], while the retrieval reference Car

is selected by the RAGate module. Specifically, a similarity
probe is first performed on the visual embedding to retrieve
the most similar candidate:

Shighest = max⟨Cv,C
i
v⟩,

where ⟨·, ·⟩ represents the cosine similarity between two fea-
ture vectors, and Ci

v is the visual feature of the ith sample
in the retrieval database. To eliminate irrelevant information,
a retrieval trigger is employed, setting a relevance threshold

1https://librosa.org/doc/main/generated/librosa.onset.onset detect.html

to filter the low-relevant references. When the similarity score
between the retrieved candidate and the visual query exceeds
the threshold, the paired music features Zrm are extracted
and used as the reference Car in the cross-attention module.
If the score falls below the threshold, a zero vector is used
instead, allowing the model to rely on its internal knowledge
to generate the music chords. This process can be formalized
as:

Car =

{
Zrm if Shighest ≥ threshold,
0 if Shighest < threshold.

After obtaining the retrieval reference, the retrieval-augmented
ChordNet is trained using the following loss function:

LC(θ) = EZm,ϵ,t

[
∥D(Zm, t, Car, Cv, Ẑmb)− Zm∥22

]
, (2)

where Ẑmb denotes the predicted music beat from BeatNet,
and D represents the music decoder.

IV. EXPERIMENTS

A. Datasets

Following the previous work, we use the dance dataset
AIST++ [32], the Figure skating dataset, and the floor exercise
dataset collected in LORIS [5] to evaluate the effectiveness of
our proposed method.

B. Experimental Settings

The music sampling rate is set to 22,050 Hz for a duration of
25 seconds. Both BeatNet and ChordNet use audio-diffusion
[33] as their backbone. We use AdamW as the optimizer with
β1 = 0.9, β2 = 0.96, and a weight decay of 4.5 × 10−2.
The entire framework is optimized jointly. We train our model
for 200 epochs on the dancing dataset, 200 epochs on the
floor exercise dataset, and 250 epochs on the figure skating
dataset, using one NVIDIA A6000 GPU. For music sampling,
we employ classifier-free guidance [34] to perform conditional
generation with a guidance scale w = 20. During inference, we
use 50 diffusion steps to balance music quality and inference
speed. The threshold of RAGate is set based on the lowest
similarity score of improved samples between Two-stage and
Two-stage+RAG in ablation studies.

C. Evaluation Metrics

To quantitatively evaluate the generated music, we utilize
several objective metrics, assessing from two aspects: rhythmic
consistency and stylistic consistency. Rhythmic Alignment.
Following previous work [5], we use the refined Beats Cov-
erage Scores (BCS) and Beats Hit Scores (BHS) to evaluate
the rhythmic alignment between the dance and the generated
music. We integrate these assessments using the F1 scores of
BCS and BHS and report their standard deviations (referred to
as CSD and HSD, respectively) to evaluate generative stability.
Stylistic Consistency. In line with DanceComposer [6], we
assess Genre Accuracy (GAC) to evaluate the consistency of
stylistic chords with respect to the dance genre.

https://librosa.org/doc/main/generated/librosa.onset.onset_detect.html


D. Comparison with SOTAs

We compare our framework with six baselines: Foley [7],
Dance2Music (D2M) [19], CMT [9], D2M-GAN [11], CDCD
[10], and LORIS [5]. Comparisons with RhythmicNet [8],
Li et al. [12], and DanceComposer [6] are not conducted
due to the unavailability of their source code. Tables I,
II, and III present the comparison results for the dance,
floor exercise, and figure skating datasets, respectively. The
results show that our proposed method consistently outper-
forms competitors across all evaluations. In terms of rhythmic
consistency, our method excels in all metrics, demonstrating
that the easy-to-hard generation pipeline effectively enhances
rhythmic alignment. For stylistic consistency, the incorporation
of retrieval references through RAGate significantly improves
performance in GAC, underscoring the effectiveness of using
external information as supplementary style signal.

TABLE I
QUANTITATIVE EVALUATION ON AIST++ DATASET.

Method BCS↑ CSD↓ BHS↑ HSD↓ F1↑ GAC↑

Foley [7] 88.2 18.2 44.2 17.2 57.5 8.2
D2M [19] 90.4 16.1 41.6 19.2 64.7 9.7
CMT [9] 93.1 14.2 48.1 17.2 58.4 9.9
D2M-GAN [11] 94.6 9.2 86.3 12.3 92.6 20.3
CDCD [10] 94.2 10.8 84.1 13.9 91.4 14.6
LORIS [5] 96.1 9.3 90.4 10.8 93.6 10.2
MotionComposer 98.8 5.2 99.4 2.6 98.7 47.8

TABLE II
QUANTITATIVE EVALUATION ON FLOOR EXERCISE DATASET.

Method BCS↑ CSD↓ BHS↑ HSD↓ F1↑

Foley [7] 38.7 27.4 34.3 25.8 37.2
D2M [19] 42.5 24.4 52.1 27.4 46.3
CMT [9] 46.4 30.1 57.4 29.8 51.3
D2M-GAN [11] 47.6 26.5 56.4 28.2 50.3
CDCD [10] 48.2 24.1 57.5 26.2 52.4
LORIS [5] 61.7 26.3 63.6 24.3 59.2
MotionComposer 67.5 21.7 73.6 15.4 67.6

TABLE III
QUANTITATIVE EVALUATION ON FIGURE SKATING DATASET.

Method BCS↑ CSD↓ BHS↑ HSD↓ F1↑

Foley [7] 33.6 27.1 23.6 17.4 27.9
D2M [19] 38.3 22.6 29.2 19.9 31.4
CMT [9] 39.2 22.8 46.4 27.5 50.7
D2M-GAN [11] 43.1 24.6 49.7 27.4 43.2
CDCD [10] 44.3 25.6 42.7 19.4 46.8
LORIS [5] 54.6 17.8 58.4 20.3 56.6
MotionComposer 59.5 10.7 64.2 13.1 63.7

E. Ablation Studies

We further evaluate the necessity of each model component,
with results presented in Table IV. To investigate the effec-
tiveness of the two-stage generation approach, we compare
the framework’s performance with one-stage and two-stage
models. In this context, ”one-stage” refers to using multi-
conditions directly in the LDM to generate rhythmic music.
The results indicate that the two-stage model performs better in
both rhythmic and stylistic alignment, demonstrating that the

easy-to-hard generation strategy is crucial for mitigating the
interference of style information. We also analyze the impact
of the genre condition, finding that it weakens the model’s
performance due to the one-to-many problem. To explore the
effectiveness of the RAGate, we compare traditional RAG
with our proposed RAGate. We observe that filtering irrelevant
retrieval information with RAGate helps the model balance
between intrinsic and external knowledge, leading to improved
generation.

TABLE IV
ABLATION STUDIES ON AIST++ DATASET.

Method BCS↑ CSD↓ BHS↑ HSD↓ F1↑ GAC↑

One-stage 96.2 9.6 86.7 12.4 91.1 22.6
Two-stage 96.7 9.2 96.4 11.7 95.3 31.7
Two-stage+Genre 96.4 8.8 85.3 10.9 86.6 26.4
Two-stage+RAG 97.4 8.6 94.2 7.9 94.9 32.7
MotionComposer 98.8 5.2 99.4 2.6 98.7 47.8

F. Case Study
In Fig. 2, we visualize the rhythm of the dance and the

corresponding music, alongside their mel-spectrograms, for
a qualitative analysis of rhythmic alignment. The generated
music beats produced by our method show a clear align-
ment with both the ground truth and the visual rhythm. The
comparison between the generated and ground truth music
mel-spectrograms reveals that the generated music exhibits a
similar crest distribution to the ground truth.
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Fig. 2. Example visualization of rhythms and musical mel-spectrograms,
demonstrating that our model successfully generates music with well-aligned
rhythms and coherent chords.

V. CONCLUSION

In this work, we present a novel retrieval-augmented two-
stage generation pipeline to achieve long-term, high-quality
video soundtrack generation with both rhythmic alignment and
stylistic consistency. Comparisons with SOTA methods across
various performance metrics demonstrate that our method
significantly improves the quality of video soundtrack gen-
eration. In future work, we plan to extend this approach by
integrating large-scale music generation models and exploring
the potential of our framework in zero-shot scenarios.
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